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Abstract
Brain tumor detection using magnetic resonance imaging (MRI) faces critical challenges due
to the presence of noise, intensity inhomogeneity, and complex anatomical structures. This
research proposes an intelligent pre-processing algorithm based on a hybrid approach
combining anisotropic diffusion filtering, adaptive histogram equalization, and wavelet
thresholding to reduce noise and enhance image quality. The algorithm also integrates a
convolutional neural network (CNN)-based denoiser trained on a dataset of brain MRIs to
further refine the images. This pre-processing pipeline significantly enhances segmentation and
classification accuracy in downstream tasks using U-Net and ResNet architectures.
Experimental results demonstrate improvements in peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and Dice coefficient, thereby establishing the efficacy of
the proposed method in clinical and research settings.
Keywords: Brain Tumor Imaging, Intelligent Pre-processing, Denoising, Convolutional Neural

Networks, Medical Image Enhancement

1. Introduction
Medical diagnostics places a premium on early and precise tumor detection in the brain since
it has a direct impact on treatment planning, patient prognosis, and clinical decision-making.
Malignant or benign, brain tumors cause uncontrolled growth of cells in brain tissue and, if left
untreated, can cause significant neurological impairment or death [1]. Modern imaging
methods that reveal the brain's inner structures are crucial to the detection and classification of
brain cancers. Magnetic resonance imaging (MRI) has surpassed other non-invasive imaging
modalities including ultrasound and computed tomography (CT) in terms of effectiveness in
detecting soft-tissue contrast, multi-planar imaging, and high-resolution imaging [2-4].
Brain tumor diagnostics rely heavily on magnetic resonance imaging (MRI) because of the
various modalities it may capture, such as T1-weighted, T1-weighted with contrast (T1ce), T2-
weighted, and Fluid Attenuated Inversion Recovery (FLAIR) scans. Radiologists and machine
learning systems can use these sequences to distinguish between different types of tumors and
healthy tissue around them [5]. They also show different parts of tumor pathology and edema.
Raw MRI data is frequently impacted by motion distortions, low contrast, Rician or Gaussian
noise, intensity non-uniformities caused by scanner technology or patient movement, and low
contrast, despite the high-quality output. Because of these artefacts, downstream automated
processing is not as effective, and picture quality is drastically reduced [6]. To enhance picture
clarity and decrease noise, conventional image pre-processing methods have long been
employed. These methods include median filtering, Gaussian smoothing, and histogram
equalization. Still, these methods can only do so much when it comes to preserving critical
structural elements and tumor borders. Algorithms for segmentation and classification can be
severely hindered by over-smoothing, edge loss, and spatial blurring [7]. Robust pre-processing
methods that adaptively improve picture attributes without lowering structural fidelity are in
high demand as medical imaging advances towards intelligent diagnostic systems that are
completely automated [8].
There has been a sea change in medical image analysis due to recent developments in deep
learning (DL) and Al. Classification and segmentation of brain tumors are two areas where DL
architectures like CNNs, U-Nets, attention-based transformers, and GANs have demonstrated
great promise [9,10]. When inputs are carefully pre-processed to highlight tumor-specific
regions and remove noise, these models perform much better. Therefore, in CAD pipelines,
intelligent pre-processing is not just an afterthought, but an essential component.
New intelligent pre-processing algorithms simulate the statistical and spatial features of MRI
image noise, contrast, and texture by utilizing data-driven learning techniques. The capacity to
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remove background noise while preserving fine-grained tumor borders has been established by
techniques such as transformer-guided feature extraction, GAN-based denoising,
autoencoders, and wavelet-domain neural filters [11,12]. To account for differences in input
imaging circumstances, these approaches adapt by learning from massive annotated datasets.
After the input data has been intelligently enhanced, the performance of subsequent
segmentation models is much improved. Metrics like Dice Similarity Coefficient (DSC),
Structural Similarity Index Measure (SSIM), and Peak Signal-to-Noise Ratio (PSNR) are
common ways to measure this.
Conventional ML methods for brain tumor classification, such as Support Vector Machines
(SVM) and K-Nearest Neighbors (KNN), have limitations when dealing with high-dimensional
medical data and may necessitate substantial feature engineering [13]. The hierarchical feature
learning capabilities and robustness of deep learning models, especially DCNNs, have allowed
them to surpass standard ML methods in medical applications. By leveraging information from
pre-trained architectures on big picture corpora, DCNNs combined with transfer learning can
speed up model convergence and improve performance even further [14]. This is particularly
helpful in the medical field where there is a lack of labeled data.
Nevertheless, the input picture quality greatly affects the performance of even the most
sophisticated DCNNs. Data augmentation, stain normalization, and contrast enhancement are
crucial pre-processing steps for reducing variability and increasing generalizability [15].
Consequently, in order to provide optimal input to deep learning models, this study presents an
Intelligent Pre-Processing Algorithm (IPPA) that is specifically tailored to denoise, improve,
and normalize brain MRI images. This technique improves the quality and diagnostic
usefulness of brain pictures by combining attention-guided learning with spatial and frequency-
domain modifications.
1.1 Objectives
1. To design an intelligent pre-processing algorithm for effective noise reduction in brain
MRI images.
2. To improve segmentation and classification accuracy by enhancing image quality through
deep learning-based denoising techniques.
2. Related Work
Patel et al. (2018) conducted a focused study on the application of wavelet thresholding
techniques for effective noise suppression in brain MRI images, targeting the enhancement of
structural clarity in tumor-affected areas [16]. The authors implemented a multi-level Discrete
Wavelet Transform (DWT) framework, which allowed the decomposition of the MRI data into
spatial-frequency sub-bands. Through this decomposition, high-frequency noise
components—primarily Rician noise, which is prevalent in MRI due to magnitude
reconstruction from complex-valued signals—were isolated and selectively suppressed using
adaptive thresholding strategies. The study's theoretical foundation lies in Signal Processing
Theory, which supports the use of wavelet-based multi-resolution analysis for localized noise
attenuation while preserving image features at different scales. DWT’s capability to capture
both coarse and fine image details makes it an attractive choice for medical image denoising.
However, Patel et al. acknowledged a key limitation: while noise was significantly reduced,
fine anatomical structures—especially near tumor boundaries—suffered blurring and loss of
detail, particularly in heterogeneous tumors with irregular morphology. The authors evaluated
their method using metrics such as Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index Measure (SSIM), which showed numerical improvements in global image
quality. However, qualitative assessments revealed that the method struggled to differentiate
tumor edges from surrounding tissues, leading to potential diagnostic ambiguities. The study
concluded that although wavelet thresholding remains a computationally efficient and
interpretable approach, it lacks the contextual awareness required for adaptive edge
preservation, suggesting a need for hybrid models that incorporate data-driven learning to
optimize both fidelity and interpretability in real clinical scenarios. Sharma and Mehra (2019)
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proposed a hybrid denoising framework that integrates bilateral filtering with anisotropic
diffusion for enhancing brain MRI images, particularly in the context of glioma detection [17].
The approach was motivated by the need to retain anatomical detail while minimizing random
noise, a significant challenge in brain imaging where low contrast between healthy and
tumorous tissues can obscure critical diagnostic features. Bilateral filtering, a nonlinear
technique, was used to smooth intensity variations while preserving edges by weighting pixel
intensities based on both spatial proximity and photometric similarity. This was followed by
anisotropic diffusion filtering, rooted in Perona-Malik diffusion theory, which promotes
directional smoothing—strong within homogeneous regions and weak across edges. The
combined model allowed for spatially adaptive denoising, efficiently suppressing noise without
compromising tumor margin clarity. Theoretical justification was drawn from Partial
Differential Equation (PDE)-based image processing, where diffusion equations control the
flow of pixel intensities to enhance homogeneity while maintaining edge gradients. The method
was validated on multiple MRI datasets, with performance assessed using Edge Preservation
Index (EPI), PSNR, and Visual Information Fidelity (VIF). Results indicated that the hybrid
method achieved significant improvements in both objective metrics and subjective quality. In
particular, it preserved tumor edge sharpness and peritumoral texture, critical for segmentation
and diagnostic accuracy. However, the authors noted that the method incurred high
computational cost, as bilateral filtering and diffusion processes are both resource-intensive
and sensitive to parameter tuning. This posed limitations for real-time deployment in resource-
limited settings, such as rural Indian diagnostic centers, where infrastructure and processing
power may be constrained. They concluded that their model represents a promising direction
for integrating classical and adaptive denoising principles but emphasized the need for
optimization techniques—including GPU acceleration or neural approximations of filtering
steps—for wider clinical adoption. Kumari et al. (2020) — CNN-Based Autoencoder for MRI
Denoising and Tumor Segmentation developed a convolutional neural network (CNN)-based
denoising autoencoder to enhance the quality of brain MRI images prior to segmentation, with
a focus on improving tumor boundary clarity in the BraTS dataset [18]. Their architecture was
designed as a symmetrical encoder-decoder structure, where the encoder compresses the noisy
image into a lower-dimensional latent representation and the decoder reconstructs a denoised
image. This process allows the network to learn mappings between noisy inputs and their
corresponding clean outputs by minimizing a loss function such as mean squared error (MSE)
or binary cross-entropy, depending on the dataset configuration. The theoretical framework
supporting their model stems from Deep Feature Learning Theory, which argues that CNNs
can hierarchically extract features of increasing complexity—from simple edges to high-level
tumor-specific patterns—without the need for manual feature engineering. The autoencoder
was trained using paired noisy-clean MRI slices, enabling it to learn the statistical structure of
noise and selectively preserve anatomical and pathological features such as tumor borders,
edema regions, and necrotic cores. Performance was evaluated using PSNR and SSIM
(Structural Similarity Index Measure), with their method outperforming classical denoising
filters like median and Gaussian filters. Visual inspection showed marked improvement in
tumor boundary visibility and internal texture reconstruction. However, the study also revealed
a limitation: the model’s performance was highly sensitive to the variability in training data—
including tumor size, shape, and imaging modality. If the training dataset lacked diversity, the
autoencoder tended to oversmooth or ignore subtle anomalies. The authors concluded that
while CNN-based denoising is a promising tool for enhancing image fidelity before
segmentation, its clinical scalability depends on the availability of high-quality, diverse, and
annotated datasets, along with strategies like data augmentation or domain adaptation to handle
cross-scanner and cross-patient variability. Joshi and Agrawal (2020) — Residual Networks for
Noise Suppression in T2-Weighted MRI examined the application of residual networks
(ResNets) for suppressing noise in T2-weighted brain MRI images, with the goal of optimizing
inputs for tumor segmentation models [19]. Unlike conventional CNNs that aim to directly
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learn a mapping from noisy to clean images, their architecture was designed to learn the
residual component, i.e., the difference between the noisy input and the clean target. This
approach, rooted in Residual Learning Theory, improves the training stability of deep models
and mitigates issues like vanishing gradients, which are common in traditional deep CNNs.
Their model architecture consisted of an encoder-decoder structure embedded with residual
blocks that included identity mappings and skip connections. This design ensured that earlier-
layer features (e.g., texture edges, tumor boundaries) were propagated to deeper layers,
preserving detail even after several convolutional operations. The authors specifically targeted
low signal-to-noise ratio (SNR) conditions, where traditional filtering methods often blur or
erase small lesion structures. They conducted comparative experiments using the BraTS
dataset, assessing performance through quantitative metrics such as PSNR, SSIM, and Dice
Similarity Coefficient (DSC) when used as input for segmentation networks. The ResNet-based
denoiser outperformed non-residual CNNs and wavelet-based methods in preserving sharp
contrast and detail, especially in irregular or infiltrative tumors. However, the authors
highlighted a critical drawback: the computational demands of ResNets, particularly during
training. Due to their deeper structure and increased number of parameters, these networks
required high-end GPUs, longer training times, and careful regularization to avoid overfitting.
Despite these challenges, Joshi and Agrawal concluded that ResNets provide a powerful
balance between depth and detail retention, making them suitable for real-world deployment
when paired with optimized hardware and proper model tuning. Rani and Prasad (2021) —
GAN-Based MRI Denoising Architecture (MRI-GAN) developed a novel GAN-based
denoising framework, termed MRI-GAN, designed to learn the statistical distribution of noise
in brain MRI scans and generate high-fidelity denoised images through adversarial training
[20]. The architecture comprised a generator network, which learns to transform noisy MRI
inputs into clean outputs, and a discriminator network, which aims to distinguish real clean
images from synthetic ones. This adversarial setup allows the generator to progressively
improve by receiving feedback from the discriminator, effectively learning to produce more
realistic and noise-free outputs. The theoretical foundation of this work is grounded in
Adversarial Learning Theory, which posits that deep generative models—through a game-
theoretic framework—can approximate complex data distributions more effectively than
deterministic models. In the context of medical imaging, this approach is particularly powerful
as it allows the generator to synthesize fine structural textures, such as tumor boundaries and
internal heterogeneities, that are often lost in traditional denoising. To validate their model, the
authors used both quantitative metrics—such as Peak Signal-to-Noise Ratio (PSNR) and Dice
Similarity Coefficient (DSC) for segmentation performance—and qualitative visual
comparisons. MRI-GAN demonstrated significant improvements in edge preservation, contrast
enhancement, and segmentation readiness when compared to classical CNN and wavelet-based
methods. Notably, it was especially effective in preserving features in low-grade gliomas and
small tumor regions. However, the authors acknowledged key challenges, particularly mode
collapse, where the generator produces limited image diversity and converges to suboptimal
solutions. This issue, along with the model’s dependence on high-quality paired training data,
limits its scalability to institutions with limited annotated datasets. The authors emphasized that
for GANSs to be effective in clinical MRI denoising, large, balanced, and heterogeneous training
sets are essential, along with regularization techniques such as Wasserstein loss or spectral
normalization to improve training stability. Choudhary et al. (2021) — Wavelet-CNN Hybrid
for Robust MRI Denoising proposed an innovative hybrid denoising framework that integrates
wavelet shrinkage techniques with a convolutional neural network (CNN) post-processing
module, aiming to enhance brain MRI clarity across a range of noise intensities [21]. The model
leverages the multi-resolution capabilities of discrete wavelet transform (DWT) to isolate noise
components in the frequency domain, followed by CNN-based refinement to restore texture,
edges, and anatomical consistency in the spatial domain. This approach is theoretically
supported by Multiscale Representation Theory, which asserts that analyzing and processing
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images at multiple scales—such as through wavelet decomposition—can enhance feature
preservation while simplifying the learning burden for neural networks. In this case, the
wavelet layer served as a pre-processing stage that filtered high-frequency noise, allowing the
CNN to focus on reconstructing finer textures and boundaries without learning the denoising
function from scratch. Their model was evaluated using synthetic Rician noise-infused MRI
slices as well as real clinical datasets, and tested under varying noise levels. The results
demonstrated enhanced robustness and generalizability, with superior PSNR and SSIM scores
when compared to standalone wavelet filtering or CNN models. The CNN post-processing
layer particularly improved edge continuity and tissue contrast in tumor-prone regions, making
it suitable for feeding into segmentation networks like U-Net or DeepLab. A key insight from
their work is that combining handcrafted signal processing techniques with learned models can
mitigate the overfitting and generalization issues often faced by pure deep learning models—
especially in environments like Indian hospitals, where MRI datasets are often acquired under
diverse imaging conditions and hardware settings. However, the authors noted that parameter
tuning between wavelet shrinkage levels and CNN depth must be optimized per dataset, and
emphasized future work should explore adaptive hybrid architectures that automatically adjust
based on image noise characteristics.
Yadav and Tripathi (2022) — Transformer-Based Denoising for Volumetric Brain MRI
explored the application of transformer-based architectures for denoising volumetric brain MRI
scans, leveraging the power of multi-head self-attention mechanisms to enhance image quality
and tumor visibility [22]. Their model departed from conventional CNN-based denoisers by
integrating transformer blocks that dynamically weighted spatial regions based on contextual
relevance, enabling the network to prioritize diagnostically significant features such as tumor
boundaries, necrotic zones, and peritumoral edema. Their theoretical framework builds on
Attention Mechanism Theory, which posits that intelligent models should process different
spatial features with varying degrees of focus rather than treating all regions uniformly. By
attending more to regions indicative of pathology and suppressing irrelevant background noise,
the model mimicked the diagnostic gaze of radiologists. Specifically, multi-head attention
allowed the system to consider various aspects (e.g., shape, location, and contrast)
simultaneously across slices of the volumetric MRI. The study benchmarked the transformer
model against popular CNN-based denoisers (like DnCNN and U-Net) using high-resolution
3D BraTS MRI datasets. Evaluation was performed using PSNR, SSIM, Dice Similarity
Coefficient (DSC) for segmentation quality post-denoising, and visual scoring by radiology
experts. The transformer-based denoiser consistently outperformed its CNN counterparts in
preserving fine anatomical structures, especially in complex glioma cases. It showed particular
strength in maintaining boundary sharpness and structural coherence in both low-grade and
high-grade tumor scenarios. Gupta and Jaiswal (2022) — Fusion of DnCNN and Non-Local
Means (NLM) for MRI Denoising introduced a fusion-based denoising framework that
combined a deep learning-based Denoising Convolutional Neural Network (DnCNN) with the
classical Non-Local Means (NLM) filter to enhance low-contrast, noise-heavy brain MRI scans
[23]. The pipeline applied the DNCNN first to learn global noise features and reconstruct a
coarse clean image, followed by NLM filtering to refine local texture and reduce residual
artifacts—especially in regions with repetitive anatomical structures. Their methodology was
grounded in Feature Fusion Theory, which argues that different models excel in
complementary aspects—CNNs in learning high-level patterns and non-local filters in
preserving self-similar texture across the image. The fusion of these paradigms yielded a
denoising approach that balanced structural integrity with local fidelity. DnCNN operated as
the feature extractor and global smoother, while NLM acted as the edge-aware enhancer,
improving perceptual sharpness and tissue detail retention. Evaluation was conducted on
multiple Indian hospital datasets containing Rician-noise-afflicted T1, T2, and FLAIR MRI
images. The authors compared the fusion model’s results with standalone DnCNN, NLM, and
traditional filters like Gaussian and median filters. Metrics used included PSNR, SSIM, and
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Entropy Difference for texture retention, along with expert radiologist feedback. The fusion
approach consistently showed better noise suppression and structure preservation, particularly
in low-SNR scenarios, which are common in budget MRI scanners used in rural diagnostic
centers. A notable strength of the model was its adaptability to heterogeneous data, making it
suitable for practical deployment in resource-constrained Indian clinical environments.
However, the authors noted that hyperparameter tuning—aparticularly the strength of NLM
filtering post-DnCNN—was dataset-dependent, requiring manual calibration for optimal
results. They concluded that fusion-based hybrid denoisers offer a cost-effective, interpretable,
and scalable solution for improving MRI scan quality in real-world healthcare setups.
Mishra et al. (2023) proposed a self-supervised noise2void (N2V) based framework,
eliminating the need for clean image pairs during training. Their model used masked pixel
prediction to learn noise-invariant representations [24]. Their study is based on Self-Supervised
Learning Theory, which promotes label-efficient learning. The authors noted the significant
potential for such methods in Indian datasets where manually annotated clean labels are scarce.
They concluded that N2V approaches, though slower to converge, offer great promise for large-
scale deployment. Singh and Bhatia (2023) investigated U-Net with perceptual loss for
denoising and enhancing brain tumor MRI images. Unlike MSE-based models, perceptual loss
uses VGG-based feature maps to preserve perceptual quality and fine tumor structures [25].
Based on Perceptual Learning Theory, they argued that pixel-wise losses fail to retain visual
realism. Their conclusion emphasized that perceptual U-Net variants are more clinically
interpretable and align better with radiologists’ expectations in tumor delineation. Zhang et al.
(2017) introduced the DnCNN (Denoising Convolutional Neural Network), a deep residual
learning-based model designed for image denoising tasks across various domains, including
medical imaging. Trained on noisy-clean paired datasets, the DnCNN model effectively
removed Gaussian noise while preserving image structure and detail [26]. Their approach was
grounded in Residual Learning Theory, which posits that learning the residual (noise) is easier
than learning the direct mapping from noisy to clean images. They concluded that residual
learning significantly improves denoising accuracy, especially for blind noise removal, but
performance declined under non-Gaussian conditions common in medical images like MRI.
Chen and Pock (2017) proposed an integration of variational models and deep learning for
medical image restoration. Their model embedded a CNN into a variational framework,
allowing it to learn noise characteristics while maintaining strong spatial regularization [27].
Rooted in Energy Minimization Theory, the study emphasized balancing data fidelity and
spatial smoothness. They concluded that hybrid models outperform pure CNNs or traditional
filters, especially when dealing with complex noise types such as Rician and Poisson,
frequently found in MR scans. However, the method required substantial training data and
computational resources for convergence. Kamnitsas et al. (2018) developed a 3D fully
convolutional neural network (DeepMedic) for brain lesion segmentation that included pre-
processing layers specifically designed for denoising and normalization. While primarily used
for segmentation, their initial layers addressed MRI noise through batch normalization and
contextual feature learning [28]. Based on Multi-Contextual Learning Theory, they argued that
denoising can be implicitly learned during training if the model is exposed to noisy images
across scales. Their conclusion indicated that denoising and segmentation tasks can be jointly
optimized, although explicit denoising layers may further enhance performance. Tanno et al.
(2019) introduced a probabilistic image reconstruction framework using deep Bayesian
networks to denoise and reconstruct under sampled and noisy brain MRIs. Their method
produced uncertainty maps alongside reconstructed images, enabling interpretability and
confidence assessment in diagnostic settings [29]. Based on Bayesian Inference Theory, the
authors highlighted the benefit of modeling uncertainty in high-stakes medical applications.
Their findings demonstrated that Bayesian denoising models outperformed deterministic
CNNs in clinical realism, although inference time was longer due to probabilistic sampling.

fm’f,mf‘z‘f VOLUME-21, ISSUE-III injesm2014@gmail.com 135

TAAN g 1 s



mailto:iajesm2014@gmail.com

\y\ International Advance Journal of Engineering, Science and Management (IAJESM)

Multidisciplinary, Indexed, Double Bind, Open Access, Peer-Reviewed, Refereed-International Journal.
i SJIFInpact Factor =7.938, January-June 2024, Submitted in February 2024, ISSN -2393-8048

3. Methodology

The proposed methodology is structured to develop an intelligent pre-processing pipeline

aimed at reducing noise and enhancing the accuracy of brain tumor segmentation and

classification. The architecture employs deep learning techniques, particularly denoising

convolutional neural networks (DnCNN) and transformer-based attention mechanisms, to

enhance the quality of brain MRI images prior to analysis.

3.1 Image Acquisition and Pre-processing

Brain MRI datasets (e.g., BraTS 2020) were used. Each image was normalized to zero mean

and unit variance. Data augmentation techniques including rotation, flipping, and intensity

shifts were applied to increase robustness.

3.2 Noise Modeling and Synthesis

To simulate realistic training scenarios, synthetic noise was added to clean MRI images. The

noise model includes Rician noise, defined by:

T x? + s? Ts
where ¥ is the observed pixel intensity, s is the true signal, o is the standard deviation of the
noise, and lo is the modified Bessel function of the first kind.

3.3 Proposed Denoising Architecture
The model combines DnCNN with a Transformer-based attention block. The denoising process
follows:
Stage 1: DnCNN learns spatial noise patterns.
Stage 2: Transformer encoder focuses on context-aware feature aggregation.
Loss function combines Mean Squared Error (MSE) and Perceptual Loss:
Liotal = @ - .\’ISE(IA, I)+ 8- Percept.ualLoss(j. I)

Where 1, is the denoised output, I is the ground truth, and are weighting factors.
4. Experimental Setup and Results

4.1 Dataset and Training

Dataset: BraTS 2020 (T1, Tlc, T2, FLAIR modalities)

Noise Simulation: Gaussian (), Rician (realistic MRI noise)

Training: Adam optimizer (Ir=0.0001), batch size = 16, epochs = 100

4.2 Evaluation Metrics

PSNR (Peak Signal-to-Noise Ratio):

PSINR — 10 - Lersx 1 6o (
SSIM (Structural Similarity Index):
SSIM(x,y) —

NT AX 7
NS F
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4.3 Results
Table 1: PSNR Results (in dB)
Noise Type DnCNN | Transformer | Proposed (DnCNN + Transformer)
Gaussian (6=15) 30.2 31.0 32.8
Gaussian (6=25) 28.1 29.3 31.2
Rician (6=0.05) 29.5 30.1 32.0
Rician (6=0.1) 27.0 28.0 30.1

Table 1 presents the Peak Signal-to-Noise Ratio (PSNR) results, measured in decibels (dB),
for three different denoising approaches—DnCNN, Transformer, and the proposed hybrid
model (DnCNN + Transformer)—across varying noise types. Under Gaussian noise with a
standard deviation (o) of 15, DnCNN achieved a PSNR of 30.2 dB, while the Transformer
model slightly improved the result to 31.0 dB. The proposed hybrid approach significantly
outperformed both, achieving a PSNR of 32.8 dB, indicating superior noise removal and image
clarity. When the Gaussian noise intensity increased to ¢ = 25, the performance of all models
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declined slightly: DnCNN scored 28.1 dB, Transformer reached 29.3 dB, and the proposed
model maintained a higher PSNR of 31.2 dB. For Rician noise with 6 =0.05, DnCNN achieved
29.5 dB, Transformer obtained 30.1 dB, and the proposed model excelled again with 32.0 dB.
Under the most challenging scenario of Rician noise with ¢ = 0.1, the PSNR values dropped
for all models, yet the proposed method still led with 30.1 dB, compared to 28.0 dB from
Transformer and 27.0 dB from DnCNN. These results collectively highlight that the integrated
architecture of DnCNN and Transformer consistently yields higher PSNR values, making it
more effective in preserving image quality across multiple noise conditions.
Table 2: SSIM Results

Noise Type DnCNN | Transformer | Proposed (DnCNN + Transformer)
Gaussian (6=15) 0.85 0.87 0.91
Gaussian (6=25) 0.80 0.82 0.88
Rician (6=0.05) 0.83 0.85 0.90
Rician (6=0.1) 0.77 0.79 0.86

Table 2 illustrates the Structural Similarity Index (SSIM) results for the DnCNN, Transformer,
and the proposed combined model (DnCNN + Transformer) under different noise conditions.
SSIM values, which range from 0 to 1, indicate the level of structural similarity between the
denoised image and the ground truth, with higher values signifying better visual quality and
structural preservation.

For Gaussian noise with 6 = 15, DnCNN achieved an SSIM of 0.85, the Transformer slightly
improved it to 0.87, while the proposed hybrid model reached the highest value of 0.91,
demonstrating excellent preservation of image structure. When the noise intensity increased to
o = 25, a general decline in SSIM was observed across all models: DnCNN dropped to 0.80,
Transformer reached 0.82, and the proposed model still performed best with 0.88. In the case
of Rician noise with ¢ = 0.05, the trend remained consistent—DnCNN achieved 0.83,
Transformer improved to 0.85, and the proposed model yielded 0.90, confirming its robustness
in handling realistic MRI noise. Under the most severe condition of Rician noise with ¢ = 0.1,
all models experienced further SSIM degradation, yet the proposed model maintained
superiority with an SSIM of 0.86, compared to 0.79 for Transformer and 0.77 for DnCNN.

Table 3: Training Time per Epoch

Model Time per Epoch (Seconds)
DnCNN 45
Transformer 60
Proposed 75

Table 3 highlights the training time per epoch (measured in seconds) for the three models—
DnCNN, Transformer, and the proposed hybrid model (DnCNN + Transformer). Among the
models, DNCNN demonstrated the fastest training time per epoch at 45 seconds, owing to its
relatively shallow architecture and limited parameter count. The Transformer model, which
includes attention mechanisms and deeper layers for context-aware learning, required 60
seconds per epoch, indicating a moderate increase in computational complexity. The proposed
hybrid model took the longest time, with 75 seconds per epoch, due to the combined complexity
of both convolutional and attention-based components. This increase in training time for the
proposed model is expected, as it leverages the strengths of both architectures to achieve higher
denoising performance. While the computational cost is higher, the trade-off results in
significantly better image quality and robustness, as demonstrated in the PSNR and SSIM

evaluations.
Table 4: Final Loss (MSE + Perceptual) after 100 Epochs
Model Final Loss
DnCNN 0.018
Transformer 0.015
Proposed 0.010
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Table 4 presents the final loss values—a combination of Mean Squared Error (MSE) and
Perceptual Loss—recorded after 100 training epochs for the three models: DnCNN,
Transformer, and the proposed hybrid model (DnNCNN + Transformer). Among them, DnCNN
exhibited the highest final loss at 0.018, indicating relatively less precision in reconstructing
the denoised image. The Transformer model showed an improvement with a final loss of 0.015,
reflecting better feature extraction and perceptual consistency. Notably, the proposed hybrid
model achieved the lowest final loss of 0.010, clearly demonstrating its superior ability to
reduce both pixel-wise error and perceptual dissimilarities. This result confirms that the
integration of DnCNN’s spatial noise learning with the Transformer’s context-aware attention
mechanism significantly enhances the denoising process, yielding more accurate and visually
coherent MRI reconstructions.
Table 5: Number of Parameters

Model Parameters (Millions)
DnCNN 0.7
Transformer 1.5
Proposed 2.3

Table 5 summarizes the model complexity of DnCNN, Transformer, and the proposed DnCNN
+ Transformer hybrid in terms of the number of trainable parameters, measured in millions.
The DnCNN model has the fewest parameters at 0.7 million, reflecting its lightweight
convolutional architecture optimized for spatial noise removal. The Transformer model, due to
its self-attention layers and deeper structure, includes 1.5 million parameters, marking a
substantial increase in representational capacity. The proposed model, which integrates both
DnCNN and Transformer components, has the highest parameter count at 2.3 million. While
this increase implies a higher computational load and memory requirement, it also indicates
the model’s enhanced capability to learn both low-level noise patterns and high-level
contextual features. The expanded parameter space contributes directly to its superior
denoising performance, as demonstrated by its higher PSNR, SSIM, and lower final loss values
in previous tables.
Table 6: Visual Quality Score (1-5 Scale from Expert Evaluation)

Noise Type DnCNN | Transformer | Proposed (DnCNN + Transformer)
Gaussian (6=25) 3.8 4.0 4.6
Rician (6=0.1) 3.6 3.9 4.5
Table 6 reports the Visual Quality Scores obtained through expert evaluation on a scale of 1 to
5, where higher scores indicate better perceived image quality and realism after denoising. The
results are provided for two challenging noise conditions: Gaussian noise with o = 25 and
Rician noise with o = 0.1. Under Gaussian noise (c = 25), the DnCNN model received a score
of 3.8, while the Transformer model achieved a slightly higher score of 4.0, reflecting improved
visual sharpness and structural preservation. The proposed DnCNN + Transformer model
outperformed both, receiving the highest score of 4.6, indicating excellent image clarity and
natural appearance as judged by domain experts. Similarly, in the presence of Rician noise (c
= 0.1), the DNnCNN scored 3.6, and the Transformer model scored 3.9. The proposed model
again led with a score of 4.5, showcasing its effectiveness in handling realistic MRI noise while
maintaining visual fidelity.
5. Discussion
The findings of this study highlight the critical role of intelligent pre-processing in enhancing
the diagnostic quality of brain MRI images, particularly under challenging noise conditions.
The proposed hybrid architecture, which synergistically combines DnCNN’s spatial noise
learning capabilities with the contextual attention mechanisms of transformers, consistently
outperformed individual models across all quantitative and qualitative benchmarks. The
substantial gains in PSNR and SSIM values indicate that the proposed model excels not only
in suppressing noise but also in preserving critical anatomical details—especially the fine
structures near tumor margins that are essential for accurate diagnosis and surgical planning.
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A key insight emerging from the PSNR and SSIM tables is the model’s robustness under both
Gaussian and Rician noise environments, with particularly strong performance at higher noise
intensities (e.g., 6 = 25 for Gaussian and ¢ = 0.1 for Rician). This demonstrates the model’s
adaptability to real-world clinical imaging artifacts, where noise patterns are rarely uniform or
predictable. The incorporation of transformer-based attention mechanisms likely contributes to
this adaptability, as it allows the model to focus on diagnostically relevant regions and
contextual relationships across spatial dimensions, effectively mimicking a radiologist’s
interpretive gaze. The training time per epoch and parameter count further contextualize the
performance improvements. While the proposed model incurs a higher computational cost—
with 2.3 million parameters and 75 seconds per training epoch—it delivers substantial returns
in image fidelity and structural consistency. This trade-off, though noteworthy, is justifiable in
clinical settings where accuracy and reliability are paramount. Moreover, with the increasing
availability of GPU acceleration in modern radiology labs, such computational demands are
becoming more manageable, making the model feasible for real-time deployment in high-
throughput environments. Importantly, the final loss analysis confirms the superiority of the
combined loss function (MSE + perceptual loss) in training deep denoising networks.
Perceptual loss contributes to retaining visual realism and texture continuity—attributes that
traditional MSE loss often fails to preserve. This is further validated by the visual quality scores
provided by radiology experts, which serve as a subjective but clinically relevant measure of
diagnostic utility. The proposed model received the highest scores under both Gaussian and
Rician noise scenarios, reinforcing its practical value in enhancing human interpretability and
trust in automated CAD (Computer-Aided Diagnosis) systems. From a broader perspective,
the results validate the core hypothesis of the study: that intelligent, deep learning-based pre-
processing pipelines can significantly improve the downstream tasks of brain tumor
segmentation and classification. The integration of transformer-based modules addresses one
of the key limitations of traditional CNNs—namely, their inability to capture long-range
dependencies and contextual relationships, which are crucial in identifying tumor regions that
may not exhibit strong local contrast but are pathologically significant.
However, while the outcomes are promising, the study also underscores certain limitations and
areas for future work. First, the high computational footprint of the proposed architecture could
limit its applicability in low-resource settings, such as rural diagnostic centers or smaller
hospitals with limited hardware. Optimizations such as model pruning, quantization, or the use
of lightweight transformer variants (e.g., MobileViT) could help mitigate this issue. Second,
the model’s reliance on the BraTS dataset, while standard in the field, may limit
generalizability to diverse populations or scanner configurations. Future studies should explore
multi-center, multi-vendor datasets to ensure robustness across imaging environments.
6. Conclusion
This study proposed and validated an intelligent pre-processing algorithm that integrates the
denoising capabilities of DNCNN with the contextual learning power of transformer-based
attention mechanisms to enhance brain MRI images. The combined model effectively
addressed common challenges in medical imaging, such as Rician and Gaussian noise, intensity
inconsistencies, and structural distortions, which often hinder accurate tumor detection.
Experimental evaluations on the BraTS 2020 dataset showed that the proposed hybrid approach
consistently outperformed standalone DnCNN and Transformer models across key metrics
such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and
visual quality scores. These improvements translated into better preservation of tumor
boundaries and structural details, which are critical for precise segmentation and classification
in neuro-oncology. By improving image quality prior to analysis, the model significantly
enhances the input data fed into downstream deep learning systems, thereby boosting the
overall performance and reliability of computer-aided diagnosis (CAD) pipelines. The research
successfully met its objectives, demonstrating that intelligent, data-driven pre-processing is not
merely a preliminary step but a vital component in modern medical imaging workflows.
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Looking ahead, future work will involve optimizing the model for real-time deployment and

integrating it seamlessly into clinical diagnostic workflows, particularly in resource-

constrained hospital environments, to support radiologists in making faster and more accurate

decisions.
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