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ABSTRACT
This paper explores the use of wavelet transform techniques for feature extraction and
classification of EEG signals in motor imagery (MI) tasks, focusing on the event-related
desynchronisation (ERD) and event-related synchronisation (ERS) phenomena. The study
highlights the effectiveness of Discrete Wavelet Transform (DWT) over Continuous Wavelet
Transform (CWT) due to its efficiency in processing time and ability to compactly represent
signals. Various wavelet functions, including Daubechies and biorthogonal wavelets, were
evaluated based on their energy compaction properties and their ability to capture signal
features relevant to MI. The wavelets that demonstrated the highest energy concentration in
the approximation band were selected for further analysis. Features were extracted from the
EEG signals using these selected wavelets and were characterized using statistical and (HoS)
measures such as mean, variance, skewness, and kurtosis. These features were then used to
train a Support Vector Machine (SVM) classifier with different kernel functions. The
classification results showed that the wavelets 'db10 and ’bior6.8 provided the highest
accuracy, suggesting they are the most suitable for EEG signal analysis in MI tasks. The
findings demonstrate the potential of optimized wavelet-based feature extraction combined
with advanced machine learning techniques for improving classification performance in
brain-computer interface (BCI) systems.
Keywords: Higher-order statistical, Support Vector Machine, EEG

1. Introduction

According to the research review, the signal's dispersion owing to motor imagery (M) is both
time- and frequency-domain dependent. According to previous research, the event-related
desynchronisation (ERD) and event-related synchronisation (ERS) are two forms of
attenuation that are created during the planning and execution of motor movements. ERD
occurs in the p band (8 to 12 Hz) and ERS in the central B band (13 to 28 Hz).When selecting
a feature extraction tool, look for one that captures the underlying rhythm or changes in the
features. Wavelet transform, as proposed in this chapter, is a popular technique with desirable
qualities including time and frequency localisation and ease of implementation. Feature
detection/extraction, pattern identification, and signal compression are just a few of the many
uses for the versatile wavelet transform, which is made possible by its multi-resolution and
energy compaction characteristics. Discrete wavelet transform (DWT) is better than
continuous wavelet transform (CWT) due to its processing time. At each stage of
decomposition, the DWT-based signal decomposition yields bands with wavelet coefficients,
both approximate and detailed. Its usefulness in signal compression stems from the fact that it
accurately represents the signal while simultaneously eliminating noise and duplication. In
order to construct strong features from the underlying activity, it is possible to employ the
same idea of efficient representation to capture the signal's uniqueness. One of the best things
about this tool is the wide range of wavelet functions it offers for accurately describing
signals. In order to prepare features, it is recommended in the literature to decompose EEG
signals using empirical selection of Daubechies wavelets. The selection of the wavelet basis
and the wavelet function requires a great deal of effort when employing the wavelet
transform. The paper offers a potential method for selecting wavelet functions for the signal
being tested. Moreover, this paper implies that the statistical representation of the wavelet
coefficients, rather than passing them as features to the classifier, will serve as a powerful
feature for classification. The robust features are a statistical and higher-order statistical
depiction of the wavelet coefficients that were acquired by signal decomposition using the
matching wavelet function. Kernel tuning for SVM classifier suggested by this work helps in
excelling the performance of the system.
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1.1.1 The Wavelet Transform

In wavelet analysis, the mother wavelet is shifted and dilated to obtain a set of functions that
are then used to represent signals linearly. A collection of coefficients known as wavelet
coefficients is produced by signal decomposition. Discrete wavelet transforms (DWTSs) are
computerised ways of applying the wavelet transform. Separating the signal into its
component parts, which include both rough and fine-grained coefficients, is what it does. The
coefficients yjk(t) and ¢jk(t), which are the orthonormal wavelet basis functions and the
mother wavelet's translation and dilation, respectively, as stated in the equation 1.1 and 1.2,
aid in the discrete expansion and decomposition of the signal x(t).

v k@ = 27 w2t 7 k)j, kez® (1.1)
o k() = 271 $(273t — K)j, keZ (1.2)

Equation 1.3 indicates the multiresolution analysis of the signal x(t), where Aj is the
approximate coefficient and Dj is the detail coefficient at decomposition level j.
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(1.3)

Here in equation 1.4 we can get the detail coefficients for the ve-level of decomposition and
the approximation of the signal's decomposition.
X(t) = As(t) + Ds(t)+Da(t)+D3(t)+D2(t)+D2(t)+Da(t) (1.4)
1.2 Methods for Wavelet Function Selection: The signal-to-scaled-version-of-the-base-
wavelet similarity is the sole determinant of the wavelet basis function to be used for signal
classification. The regularity, vanishing moments, and degree of shift variance are some of
the characteristics of the wavelet band filter that are utilised for the selection of the wavelet
basis. Mechanical signals make use of an alternative basis selection criterion, which is the
greatest energy/Shannon entropy ratio. The minimal description length (MDL) principle is at
the heart of quantitative methods proposed for wavelet basis function selection. There is a
concentration of energy in the first few transform coefficients of correlated data, as proposed
by David Salomon. In order to choose the appropriate wavelet function, this study employs a
strategy that David Salomon developed for signal compression. Since the initial transform
coefficients tend to build up in the approximate coefficient band following wavelet
decomposition, this study suggests that the matching wavelet function be the one that
accumulates the most energy in the approximation band following signal decomposition.
Specifically, this study relies on the idea that the approximation band includes maximum
energy if the correlation between the signal under test and the wavelet basis function is
greater than. Accordingly, this study recommends using wavelet on the signals to detect
energy concentration in the approximate band and then choose a matching wavelet.
Additionally, this study proposed that when applied to a signal using wavelet matching,
bands that accept modulations caused by motor imagery will represent specific qualities.
Efficient classification will be the result of this. To back up this claim, we can conduct an
empirical study of different band energy wavelet functions. The literature favours daubechies
and biorthogonal wavelets for biomedical signal applications. For this experiment, we choose
all possible permutations of the Daubechies wavelet, an orthogonal wavelet, and a
biorthogonal wavelet with a linear phase.
1.3 Energy Accumulation in the Approximate Band: To determine wavelet energy, one
uses wavelet coefficients, which depict the signal's temporal and frequency distribution.
Equation 1.5, where A denotes the approximation coefficients and j is the level of resolution,
gives the energy compactness in the approximate coefficient band. When choosing a wavelet
function, it is helpful to compare their values for the signal's energy compression.

2
E;j = ¥ |4; ()| (1.5)
1.4 Statistical and Higher-order Statistical(HoS) Features: Mean, variance, and standard

deviation are examples of second-order statistical variables utilised to characterise wavelet
coefficients in this work. In accordance with equation 1.6, the mean provides information
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about the data values located in the middle of the discrete collection of numbers, which in
turn assesses the central tendency. The dispersion of the signal can be measured by
calculating the variance and standard deviation. According to equation 1.7, data variance is
the average squared distance from the mean (x) to each individual data value (xi).

- _ Z?:lxi
X = —n (1.6)

In equation 1.8, the standard deV|at|on is obtained by taking the square root of the variance.

By calculating the average distance between each data point in the collection and the mean,
standard deviation provides a useful measure of the dispersion of the dataset's values around

the mean.
n Y
o = /W (1.8)

While the second-order statistics provided above do a good job of reflecting the features, they
do a poor job of highlighting signal nonlinearities. In this case, a useful description might be
higher-order statistics (HoS) that includes higher-order moments (m3, m4,... ) and cumulants,
which are non-linear combinations of these moments. As seen in equation 1.9, skewness is a
third-order cumulant that quantifies the degree to which a distribution is symmetrical or
asymmetrical. The heavy-tailed/light-tailed distribution relative to a normal distribution is
measured by kurtosis, a fourth-order cumulant, which can be expressed as equation 1.10. In
this study, we propose these HoS features as a means of depicting the signal's dynamics.

=iyt () =

(o
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1.5 Classification Support Vector Machine: Vapnik established the foundational principles
of Support Vector Machine (SVM) in 1995, and the method has since gained popularity
owing to encouraging results in practical applications. With its generalisability, support

vector machines (SVMs) outperformed
more conventional = neural networks.
Instead of dividing the | \" ® data into two groups,
support vector machines A ol P (SVMs) maximise the
margin, which is the distance between the
margin and the nearest « © \ data point of each class.
This produces an ideal e Niargin separating hyperplane
that generalises well, as e <illustrated in Figure 1.1.

Figure 1.1: Support Vector Machine with Separating
Hyperplanes

1.6 Kernel Functions : Here, we apply the idea of kernel fooling to a number of kernel
functions that are detailed below.
e The modest kernel function, denoted as linear kernel in equation 1.11, is defined in terms

of two samples, x1 and X2, and a constant c.

K (X1, %X2) = XTX2 + C (1.11)

e A non-linear kernel that works well with normalised data is the polynomial kernel.

Equation 1.12 gives the degree of the polynomial d, a constant ¢, and an equation with

customisable parameters such as slope.
K (X1, X2) = (ax" x2 + ¢)¢ (1.12)

A radial basis function B X% (RBF)—a type of
Gaussian kernel—is , CT{@@‘( = : 3 G defined by equation 1.13. To
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which is critical for

the kernel function.

S ;:gx,é@ calculating the  decision
properly tune the parameter o,
estimating the non-linearity of

Figure 1.2: Selected electrodes for dataset 1
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K(xq,x,) = exp (— M) (1.13)

202
1.7 Description of Dataset 1: The Intelligent Data Analysis Group, Neurology Department,
and Group of Neurophysics Berlin have created and made available the dataset 1. Subject
data was recorded without their knowledge or consent. The subject's assignment was to use
his index and little fingers to press the respective keys on the computer keyboard. Every key
was pressed in the sequence and at my own pace. Each of the three sessions lasted for six
minutes. All sessions were recorded on the same day, with short gaps in between, at a pace of
1 key per second on average. Table Structure: With 130 milliseconds between key presses, a
total of 416 epochs or trials of 500 milliseconds duration are at your disposal. For the sake of
the competition, we have labelled 316 out of 416 epochs or trials as LHM (0 for left-hand
movements and RHM 1) and 100 as unlabelled. A 100 Hz down sampled version of the
original data is supplied, which was recorded with a sampling frequency of 1000 Hz.
Technical information: To capture the data, a Neuro-Scan amplifier was utilised, along with
an Ag/AgCl electrode cap. Figure 1.2 shows the 28 electrodes arranged in rows F, FC, C, and
CP, with two additional placements O1 and O2 added, in accordance with the widely
recognised 10/20 electrode placement scheme.2. The signals that were recorded were
subjected to band-pass filtering, with a passband ranging from 0.05 to 200Hz.
1.8 The Approach to the Suggested Program: Up to the level that separates the band of
interest, the system suggests wavelet decomposition of the signal. Computing the
approximate band energy is the first step in the empirical analysis for selecting wavelet
functions. The matching wavelet function is the one that loads up the approximation band the
most. The statistical and HoS features for a band of interest are generated using wavelet
coefficients extracted using matching wavelets. The SVM classifier is fed the characteristics
that have been retrieved, and its accuracy in classifying is measured using various kernel
functions.
1.8.1 Wavelet Decomposition : Important characteristics that pertain to fluctuations in
mobility can be retrieved from the p and [ bands using ERD and ERS, respectively.
Following the concept of motion, these occurrences are time-and frequency-limited. In order
to differentiate the p and  bands in the EEG signal that is being tested, which is sampled at a
frequency of 100Hz, five levels of decomposition are needed, with the frequency ranges for
each band being stated in Table 1.1.

277Fs < AFj < 27Fs (1.14)
Table 1.1: Wavelet decomposed band
Wavelet band Frequency Range(Hz)
D1 50-100
D2 25-50
D3 12.5-25
D4 6.25-12.5
D5 3.12-6.25
A5 1.56-3.12

1.8.2 Selection of Wavelet Functions : Popular mother wavelets for biological signals, such
as Daubechies and biorthogonal, are used for investigation. Every version of the wavelet
from dbl to db16, as well as biorthogonal wavelets biorl.1, biorl.3, biorl.5, bior2.2, bior2.4,
bior2.6, bior2.8, bior3.1, bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5, bior6.8 are
accessible in the MATLAB package that was used for the testing. We apply each wavelet to
all the signals we're testing one by one until we have the approximate band energy. The
energy that was produced by applying the daubechies wavelets to 20 signals and then
calculating the average is given in Table 1.2 (page no. 259). There is some variation in the
energy values of individual signals, but generally speaking, 90% of the signals exhibit a
consistent pattern. Table 1.2 (page no. 259) shows the energy values for 20 signals; Table 1.3
shows the average band energy for 316 signals, which is proportional to those values.Band
energy was also calculated for 20 signals in Table 1.3 and is proportional to the average band
energy using biorthogonal wavelets (316 signals, Table 1.5). Finally, matching the wavelet
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with the underlying signal determines the energy concentration in the band. According to
Table 1.3, the most energy is carried by ’db10’, 'db13’, 'db14’, and ’ db15 ’ in the
approximation band, while ” bior2.8’, 7 bior3.17, 7 bior5.57, and ’ bior6.8 ’ were recognised in
Table 1.5.

1.8.3 Optimized Feature Extraction: Feature extraction follows signal decomposition using
the chosen matching wavelet functions. The ipsilateral electrode is in charge of capturing
ERS, while the contralateral electrode is responsible for obtaining ERD. In order to gather
ERD and ERS of the signal, and thus the motor-related variability, the C3 and C4 electrodes
cover the motor cortex of the brain, as shown in Fig. 1.3. Electrode C4 demonstrated superior
performance when experimentally comparing the classification accuracy achieved by utilising
the features from electrodes C3 and C4. For feature optimisation, we solely take into account
signals from electrode C4, which collects ERD for LHM and ERS for RHM. After then, the
optimisation keeps on by picking out the band that's important for ERD and ERS, as well as
an approximate band from the wavelet-decomposed signal. These bands are used to extract
statistical data (mean, variance, and standard deviation), HoS features (skewness and
kurtosis), and wave energy. As a result, this method can enhance system performance by
choosing an ideal feature set that accounts for the MI variances.

Table 1.3: Average Approximate Band Energy for Daubechies wavelets
Daubechies wavelets Average Band Energy

dbl 51.20994
db2 65.18798
db3 69.74599
db4 71.78429
db5 73.28987
db6 74.33134
db7 74.6944
db8 74.58228
db9 74.9237
db10 75.25192
dbll 74.96743
db12 75.0679
db13 75.32244
db14 75.55061

db15 75.38548

LHS

Figure 1.3: Electrodes Covering Motor Cortex
1.8.4 Classifier and Evaluation Measures : Though SVM is primarily a linear classifier, it
may be "kernel tricked" to work with nonlinear bounds. Although it increases the classifiers'
complexity slightly, it is helpful for mapping data with significantly greater dimensions. The
support vector machine (SVM) is trained using 158 of the 316 available signals, while the
other 158 are utilised for testing purposes. In this study, various kernels were examined,
including the quadratic, MLP, polynomial, and Gaussian (RBF) kernels. To make sure the
classifier doesn't get overfit, we use threefold cross-validation during training.
1.9 Results from Experiments :From the Daudechies family, we chose eight wavelets— °
db10’, ? db13”’, ? db14 7, and ’ db15’ —and from the biorthogonal family, we chose  bior2.8”,
I bior3.1 7, 7 bior5.5 7, and ‘bior6.8 * —based on quantitative study of approximate band
energy. In order to build statistical and HoS features, the coefficients of the wavelets that
were used to decompose the signals from electrode C4 are utilised. Using these features, we
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train and test an SVM classifier using linear, Gaussian, polynomial, quadratic, and multilayer
perceptron kernel functions; we then measure the system's performance by looking at its
classification accuracy. According to Table 1.8, the highest classification accuracy achieved
for Y db10’ with the MLP kernel function is 83%. For the vast majority of kernel functions,
Wavelet ’ db10 ’ asserts the highest level of classification accuracy. Since Jbior6.8 asserts
high classification accuracy across the board for all kernel functions, it might be thought of as
the matching wavelet as well.

Table 1.5: Average Approximate Band Energy for Biorthogonal Wavelets
Biorthogonal wavelets Approximate Band Energy

biorl.1 51.20994
biorl.3 66.01561
biorl.5 71.41573
bior2.2 72.00769
bior2.4 75.81602
bior2.6 77.83013
bior2.8 78.59862
bior3.1 78.49326
bior3.3 70.9335
bior3.5 72.86749
bior3.7 74.2057
bior3.9 74.53814
bior4.4 77.86559
bior5.5 81.09622
bior6.8 81.57216
Table 1.6: Classification Accuracy for Different Kernel Functions
Wavelet Linear MLP Quad. Gaus. Poly.
Function
bior2.8 81.71 81.71 77.56 77.56 78.67
bior3.1 77.56 77.56 74.51 77.56 77
bior5.5 78.39 78.39 78.67 80.05 79.5
bior6.8 80.55 80.55 80.62 81.16 80.37
dbl3 80.45 80.45 78.39 79.77 79.5
db10 81.6 81.6 80.6 82.32 81.8
db14 78.67 78.67 80.33 80.33 79.77
db15 77.56 77.56 74.51 77.83 76.73

1.9.1 Results for daubechies wavelets : Electrode C4's signal, which is being processed,
gathers ERD for LHM and ERS for RHM. There is no way to properly categorise RHM and
LHM without including ERD and ERS. As shown in Table 1.7 for Jdb10J, this rationale leads
to the proclamation of distinct Classification Accuracy for LHM and RHM when the signal is
acquired from a particular electrode. With the quadratic kernel, Wavelet achieved an average
accuracy of 82.32% and a classification accuracy of 83.83% for RHM and 81.19% for LHM,
respectively. The notion that ERD and ERS provide similarly powerful features is supported
by the fact that, when taking into account additional kernel functions, the classification
accuracy gap between RHM and LHM is less than 2%. Table 1.8 shows that for 7 db13’, the
classification accuracy for RHM with a linear kernel was 83.83%, while the average accuracy
was 80.45%, and similar fluctuations were noted for the other wavelets that were used.
Table 1.7: Classification Accuracy for db10

SVM Kernel LHM RHM Average(%0)
Linear 80.91 82.29 81.6
Quadratic 81.59 79.79 80.69
MLP [1 -6] 80.91 82.29 81.6
Gaussian(rbf) 81.19 83.83 82.32
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Polynomial 1 80.77 82.82 81.8
Table 1.8: Classification Accuracy for db13
SVM Kernel LHM RHM Average(20)
Linear 79.14 83.83 80.45
Quadratic 76.68 79.79 78.39
MLP [3 -2] 79.75 83.83 80.45
rbf [2] 83.33 75.46 79.77
Polynomial 1 79.14 81.83 79.5
Table 1.9: Classification Accuracy for db14
SVM Kernel LHM RHM Average(%0)
Linear 76.6871 80.303 78.67
Quadratic 77.3006 83.3006 80.33
MLP [1 -6] 74.2331 83.8384 78.67
Rbf [2] 70.5521 88.3838 80.33
Polynomial 1 76.6871 80.303 79.77

Table 1.9 shows that the average accuracy drops to 79.77% when using the quadratic and
RBF kernel for RHM with the wavelet 'db14”, although the classification accuracy remains at
83.33%. When comparing ERD caused by RHM to ERS caused by LHM on C4, this wavelet
function provides a more accurate representation.
Although the average accuracy is lower than 80% in Table, the wavelet ’db15’ achieves a
classification accuracy of 84.84% using the Gaussian (RBF) kernel for RHM.
1.9.2 Biorthogonal wavelet results :Jbior3.1J achieves a RHM classification accuracy of
80.3% and an average MLP and Gaussian kernel accuracy of 77.56% (Table 1.11 shows
results for biorthogonal versions). Using ’bior3.1° for decomposition, practically all kernel
functions assert that RHM outperforms LHM in terms of classification accuracy. Table 1.12
shows that when decomposed using * bior2.8 ?, the classification accuracy for LHM is just
63.19%, while the Gaussian kernel achieves an impressive 89% for RHM.

Table 1.10: Classification Accuracy for db15

SVM Kernel LHM RHM Average(%0o)
Linear 75.4601 79.2929 77.5623
Quadratic 71.7791 76.7677 74.5152
MLP [1 -6] 77.3006 T4.7475 75.9003
rbf [2] 69.3252 84.8485 77.8393
Polynomial 1 75.4601 79.2929 77.5623
Table 1.11: Classification Accuracy for bior3.1
SVM Kernel LHM RHM Average(20)
Linear 73.61 80.8 77.21
Quadratic 73.23 76.07 74.51
MLP [1 -2] 74.23 80.3 77.56
rbf [2] 74.23 80.3 77.56
Polynomial 1 73.61 80.8 77
Table 1.12: Classification Accuracy for bior2.8
SVM Kernel LHM RHM Average(%0)
Linear 74.23 85.35 81.71
Quadratic 75.46 79.29 77.56
MLP 74.84 85.86 81.77
rbf 63.19 89.39 77.56
Polynomial 1 74.23 85.35 78.67

1.10 Conclusion

Independent BCI with MI as a possible input signal employs efficient signal processing
techniques with the aim of incorporating additional motor motions. Choosing the most
appropriate wavelets becomes much easier with the use of a band energy-based wavelet
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selection method. The wavelets from the Daubechies family (* db10”, ’ db13”, ? db14”, and’
db15 Y) and the biorthogonal family (* bior2.8 7, 7 bior3.1 7, 7 bior5.5’, and 7 bior6.8 7) are
chosen based on their high band energies. The signal from electrode C4, which corresponds
to the ERD of LHM and the ERS of RHM, is utilised for processing out of the 28 electrodes
that are available. Applying chosen wavelets allows for the extraction of wavelet coefficients
from the signals. The signal's dynamics can be represented by HoS features skewness and
kurtosis, which are second-order statistical features. The classifier, after receiving the
extracted features, evaluates them using a variety of kernels, including linear, polynomial,
quadratic, and multi-layer perceptron. According to the results of the Classification Accuracy
calculations using the chosen wavelets, ¥ bior6.8 7 and  db10 ” are the best fit. The average
classification accuracy for Wavelet Jbior6.8” is 82.01%, whereas for ? db10 it is 83%. Signal
modelling and enhancing the machine learning utilised by the classifier can further enhance
classification accuracy. The goal of this work is to apply an optimised method for extracting
features from specific EEG signals. When developing autonomous BClIs based on MI, the
suggested system will be useful.
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Table 1.2: Approximate Band Energy for Daubechies Wavelets

Signal dbl db2 db3 db4 db5 db6 db7 db8 db9 dbl0 dbll dbl2 dbl3 dbl4 dbl5
1 67.45 90.69 9148 91.1 94.08 95.16 94.33 95.01 95.98 95.84 94.76 95.17 95.72 95.83 95.46
2 56 69.53 73.38 7843 77.16 8165 8545 85.77 8542 87.08 89.1 89.64 89.44 90.49 91.98
3 241 209 1734 28.73 2395 17.69 234 28.7 28.04 32.27 38.95 43.09 43.61 48.39 5291
4 3449 34.79 33.06 36.16 34.29 24.64 2598 28.15 2798 28.53 37.38 42.84 43.08 42.32 45.77
S) 76.3 83.8 84.18 86.98 84.78 82.98 85.18 86.59 85.1 84.33 86.49 87.57 86.54 85.49 86.06
6 25.67 60.03 57.71 53.34 59.64 58.23 58.56 52.08 53.27 49.83 48.82 4852 54.41 5252 55.14
7 32.25 76.29 80.98 85.09 85.68 83.77 8155 77.7 7397 7254 70.22 67.75 64.3 60.06 55.21
8 16.35 36.77 4548 38,58 33.93 39.11 40.1 3732 3391 35.02 29.87 29.32 283 29.49 30.38
9 64.81 81.11 82.19 83.63 83.11 835 85.04 85.09 84.23 85.03 8552 85.39 84.88 85.82 87.19
10 64.21 75.38 80.13 81.65 86.89 88.78 88.77 88.58 90.54 90.57 89.76 88.8 89.5 89.23 87.46
11 46.41 68.09 62 56.81 62.34 57.93 55.44 59.64 56.2 5242 56.59 57.71 54.59 54.86 56.69
12 58,51 92.16 90.55 92.74 95.11 95.16 94.44 9535 96.27 96.09 95.32 95.61 95.88 95.16 94.29
13 7777 87.19 8791 88.36 89.11 90.57 91.06 91.66 91.94 927 93.31 9359 93.98 94.46 94.53
14 56.6 62.01 55.17 50.64 54.47 5484 50.66 51.87 55.74 56.3 50.69 51.67 55.65 56.13 54.97
15 55.87 79.82 68.61 7492 84.61 77.89 69.08 7395 77.96 72.83 6844 7211 73.09 69.86 69.84
16 55.86 741 77.66 78.73 79.71 79.16 82.65 84.09 84.58 86.81 86.35 86.52 86.36 86.13 85.66
17 36.29 56.87 58.41 57.13 60.63 60.34 62.77 60.62 63.76 62.06 55.15 52.38 59.08 61.27 61.19
18 4112 2182 2481 4239 3436 2525 33.17 3151 21.75 18.86 24.03 23.61 18.73 18.22 21.2
19 67.84 7521 77.08 82.41 84.89 80.78 76.32 73.48 67.64 62.82 6568 66.57 64.98 60.03 61.22
20 18.88 50.18 64.01 66.08 68.35 7556 77.18 77.44 76.08 79.89 77.15 75.07 7237 78.61 7451
Average 48.84 64.84 65.61 67.69 68.85 67.65 68.06 68.23 67.52 67.09 67.18 67.65 67.72 67.72 68.08
Band

Energy

) 3 IAJESM

e Volume-18, Issue-lll 259


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)

ISSN -2393-8048, July-December 2022, Submitted in August 2022, iajesm2014@gmail.com

Table 1.4: Approximate Band Energy for Biorthogonal Wavelets

Signa | biorl. | biorl. | biorl. | bior2. | bior2. | bior2. | bior2. | bior3. | bior3. | bior3. | bior3. | bior3. | bior4. | bior5. | bior6.
I 1 3 5 2 4 6 8 1 3 5 7 9 4 5 8

1 6745 |8299 |87.96 |89.99 |91.02 9162 |92.19 |8842 |86.25 |89.67 |91.61 |9247 |93.67 |95.7 94.91
2 56.0 71.67 [69.41 |7425 |6954 |7591 |79.84 |96.34 |71.44 |65.67 |7218 |75.17 |76.0 82.81 | 83.96
3 24.1 29.91 [32.12 |26.43 |345 35.62 3091 |56.83 |4594 [4758 |4198 |34.66 |26.9 22.98 |27.23
4 3449 3482 |33.34 |46.48 |43.83 |37.67 |31.81 |76.02 |63.36 |53.9 47.2 3439 | 3797 |36.26 |31.45
5 76.3 85.00 [86.12 8292 |83.85 |84.32 [86.25 |8514 |84.88 |8255 |8498 |8559 |8857 |91.86 |90.54
6 25.67 | 6453 |69.88 |68.23 |68.93 |7201 |77.06 |91.44 |72.7 69.98 | 75.15 |79.49 |7511 |82.18 |83.27
7 3225 | 8128 |87.07 |80.88 |84.6 86.04 [83.32 |66.68 |7571 |78.05 |76.25 |69.84 |86.99 |90.03 |87.71
8 16.35 |[31.52 |31.75 |61.67 |55.89 |56.1 55.77 | 7419 |41.08 |42.86 |47.2 49.11 |53.13 |54.67 |55.76
9 64.81 |8499 |87.14 |8535 |87.29 |8857 |90.39 |90.57 |87.17 |87.96 |89.47 |89.2 90.92 |93.54 |92.97
10 64.21 |66.65 |7552 |7491 |80.31 |84.65 |87.07 |7259 |63.39 |6435 |70.22 |75.83 |85.13 |89.7 90.37
11 46.41 |56.59 [59.86 |70.71 |70.58 |70.77 |70.07 |[68.33 |7399 |[70.82 |70.25 |69.34 |71.73 |75.82 |73.72
12 58.51 [90.25 |92.56 |89.76 [91.48 [9344 |94.17 |98.24 |90.78 |914 9453 19411 |93.61 |95.53 |95.63
13 77.77 |8393 |87.35 |8508 |88.73 |90.37 |91.6 77.14 18584 |85.78 |86.75 |88.82 |91.9 94.39 |93.8
14 56.6 4746 |50.78 |59.87 |59.63 |55.74 |54.74 |6495 |58.32 |49.15 |4553 |42.07 |60.73 |60.24 |57.06
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