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ABSTRACT
In the era of big data, traditional data processing techniques often fall short in extracting
meaningful insights from vast and complex datasets. This paper explores the effectiveness of
semantic enhancement methods, specifically focusing on two novel approaches: MOUNT
(Modular Ontology-based Query Translator) and SEASOR (Semantic-based Adaptive Scalable
Object-Relational system). By augmenting raw data with semantic information, these methods
aim to improve data interoperability, searchability, and analytical capabilities. Through a
comprehensive evaluation, this study compares the performance of MOUNT and SEASOR
against existing methods using various metrics such as data quality, query execution time, and
result accuracy. The findings highlight significant improvements in query performance and
data integration, demonstrating the potential of semantic enrichment to transform raw data into
valuable insights. This research provides a nuanced understanding of how these methods can
enhance big data query processing, driving more informed decision-making and fostering
innovation across various domains.
Keywords: MOUNT, SEASOR, Semantic enhancement

1. Introduction

Two new approaches to semantic enrichment—one for static databases and one for dynamic
streaming data—have been shown in earlier chapters of this thesis. Two distinct methods for
semantic enrichment, MOUNT and SEASOR. By comparing the proposed method's
performance to that of the current method and testing it on the relevant datasets, this chapter
shows how the two approaches differ in terms of performance using different evaluation
criteria. In the era of big data, the volume, variety, and velocity of data are growing at an
unprecedented rate, presenting significant challenges for data management, analysis, and
utilization. Traditional data processing techniques often fall short in extracting meaningful
insights from such vast and complex datasets. This gap has led to the development of semantic
enhancement methods, which aim to enrich raw data with semantic information, thereby
improving data interoperability, searchability, and analytical capabilities. Semantic
enhancement involves augmenting data with metadata that provides context and meaning,
facilitating a deeper understanding and more efficient processing of information. Techniques
such as natural language processing (NLP), ontology development, and semantic annotation
are employed to transform unstructured or semi-structured data into structured, semantically
rich datasets. These methods enable more accurate and relevant data retrieval, enhance the
integration of heterogeneous data sources, and support advanced analytics and decision-making
processes. The effectiveness of semantic enhancement methods can be measured across various
dimensions, including data quality, query performance, and the ability to derive actionable
insights. Evaluating these methods involves assessing their impact on data integration, search
and retrieval efficiency, and the overall utility of the enhanced data in practical applications.
By systematically analyzing the strengths and limitations of different semantic enhancement
techniques, organizations can identify the most suitable approaches for their specific data
environments and analytical needs. This analysis begins with an overview of key semantic
enhancement methods, including their underlying principles and typical applications.
Subsequently, we delve into case studies and empirical evaluations that illustrate the real-world
impact of these methods on data processing and analytics. Finally, we discuss best practices
and future directions for leveraging semantic enhancement to address emerging challenges in
big data and knowledge management. Through this comprehensive examination, we aim to
provide a nuanced understanding of how semantic enhancement methods can transform raw
data into valuable insights, driving more informed decision-making and fostering innovation
across various domains.

2. The MOUNT and SEASOR Methodology Performance Evaluation

The MOUNT system integrates the Hadoop big data environment's multi-level semantic
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annotation architecture. A 64-bit Ubuntu 12.04 machine with an Intel ® Pentium (R) Dual CPU
E2160, 1.80 GHz CPU, and 151.8 GB of RAM is used for the research. The multi-level
semantic annotation methodology requires the following software: Hadoop 1.2.1, HBase
0.94.16, Java 1.8.0 and Java HotSpot (TM) 64-Bit Server VM. To assess performance during
SEASOR technique deployment, a number of software and hardware configurations are
needed. These tests were carried out on a 64-bit Ubuntu 12.04 PC equipped with an Intel ®
Pentium (R) Dual CPU E2160, 1.80 GHz CPU, and 128 GB of RAM. Java HotSpot (TM) 64-
Bit Server VM and Java version 1.7 are the software prerequisites.

Table 1: Comparison of MOUNT and SEASOR Implementation Scenarios

Aspect MOUNT SEASOR
Dataset Types Structured and Unstructured Stream Data
Dataset Sources Medicare, NCSU Image Intel Berkeley Research Lab

Database, BBC news, Open
Source Sports

Structured Data Hospital data (e.g., hospital Seasor readings (e.g., date, time,
name, address, city) epoch, mote id, temperature,
humidity, light, voltage)
Unstructured Data Medical images, news Not applicable
documents, sports data
Storage Frameworks Hadoop, HBase Not specified
Storage Method for Column-oriented NoSQL Not specified
Structured Data database
Storage Method for Distributed file system Not specified

Unstructured Data
Query Processing | Effectiveness and accuracy for | Accuracy and execution time for

Evaluation heterogeneous data stream data processing
management
Scalability Not specified Impact of window size and number
Evaluation of seasors on performance
Performance Not specified Result accuracy, execution time
Metrics
Comparison with Not specified CQELS, LSM

Existing Systems
Comparison of Evaluation Metrics: MOUNT vs SEASOR
Table 2: Comparison of Evaluation Metrics: MOUNT vs SEASOR

Evaluation MOUNT SEASOR
Metric
Scalability Evaluated by varying the number | Evaluated by varying the number of
of triples. seasors and the size of the window.
Correctness Measured through precision and Accuracy implied through result
recall. accuracy for stream data processing.
Precision Percentage of information Not explicitly mentioned.
returned that is correct.
Recall Proportion of relevant results Not explicitly mentioned.
retrieved.
Query Time taken to execute user Execution time compared with
Execution queries, examined by varying the | CQELS and LSM, evaluated for the
Time number of tuples and query types. number of triples and query
registration.

3. Analysing the Results

3.1 MOUNT Approach

3.1.1 The effect of the triple count

In the realm of semantic web technologies and knowledge representation, triples form the
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foundational building blocks for representing data. A triple, composed of a subject, predicate,
and object, encapsulates a single fact or assertion about the data. The number of triples, or triple
count, within a dataset is a critical metric that can significantly influence the performance and
scalability of semantic web applications. Understanding the effect of triple count is essential
for optimizing data storage, query processing, and overall system efficiency. As the triple count
increases, the complexity of managing and querying the data also escalates. Large triple counts
can lead to performance bottlenecks, increased storage requirements, and longer query
response times. Therefore, evaluating the impact of triple count on semantic enhancement
methods, such as semantic annotation, RDF (Resource Description Framework) storage, and
SPARQL (SPARQL Protocol and RDF Query Language) query execution, is crucial for
designing effective and efficient semantic web systems. This introduction delves into the
various dimensions affected by the triple count, including storage, indexing, query
performance, and system scalability. It also explores strategies and best practices for managing
high triple counts, such as triple compression, efficient indexing mechanisms, and query
optimization techniques. Through empirical studies and theoretical analysis, we aim to provide
insights into how the triple count influences the performance of semantic web technologies and
what measures can be taken to mitigate its adverse effects.

Key Areas of Impact

1. Storage Requirements:

o As the number of triples grows, the storage space needed to accommodate them increases
correspondingly. Efficient storage solutions, such as specialized RDF stores and graph
databases, are necessary to handle large triple counts without compromising performance.

2. Indexing and Retrieval:

o Effective indexing mechanisms are critical for facilitating quick data retrieval in large
triple datasets. Indexes must be designed to support efficient SPARQL query execution,
even as the triple count scales into the billions.

3. Query Performance:

o The complexity and execution time of SPARQL queries are directly impacted by the triple
count. High triple counts can lead to slower query responses and increased computational
overhead. Query optimization techniques, including query rewriting and caching, are
essential to maintain performance.

4. System Scalability:

o Ensuring that semantic web systems can scale to handle large triple counts is a significant
challenge. Scalable architectures, distributed computing, and parallel processing
techniques are crucial for maintaining system efficiency as data volumes grow.

5. Semantic Enrichment and Reasoning:

o Semantic enhancement methods, such as reasoning and inference, become more resource-
intensive with higher triple counts. Strategies to optimize reasoning processes and manage
computational resources are vital for maintaining the effectiveness of semantic
enhancements.

The performance of the MOUNT for execution time as the number of triples and user requests
increase is shown in Figure 1 and Table 3 Requests per second can be anything from 1000 to
2000, and the amount of triples can range from 2.8 million to 14 million. As can be seen in
Figure 4.1, the execution time grows in direct proportion to the number of triples and the
number of concurrent user requests. The MOUNT system completes 1000 queries in 23
milliseconds and 2000 requests in 29 milliseconds for the 14 million triples. The MOUNT
system makes good use of the Hadoop environment to manage the increase of both the user's
queries and the triples.

20

'.-.r.l

=20

15

1

Brenth e

) 3 I1AJESM

e Volume-18, Issue-IlI 227


mailto:iajesm2014@gmail.com

International Advance Journal of Engineering, Science and Management (IAJESM)
ISSN -2393-8048, July-December 2022, Submitted in October 2022, iajesm2014@gmail.com
Table 3: Number of triples Vs. Execution Time

Number of triples (millions) Execution Time (ms)
No. of Req =1000 |No. of Req =2000

2.8 35 6

4.8 8.5 12

8.1 145 19

10.5 19 24

14 23 29

As the number of triples increases from 150 million to 350 million, Figure 2a and 2b
demonstrate the performance variation in terms of recall and precision of the MOUNT system,
as well as the existing Airstore and GSA techniques. The effect of big data annotation and
WordNet engagement on the precision of the query outcome is seen in Figures 2a and 2b. The
MOUNT uses semantic annotation to bring together all the different types of data, adds it to
the global RDF ontology, and then makes sure that users get the results they want from their
queries. When a user enters a query, MOUNT uses WordNet to guarantee a semantic result,
which boosts recall while decreasing precision. After a specific number of triples, the GSA
approach's performance drops by 1%, despite the fact that it improves the recall value compared
to the Airstore approach. This is owing to the fact that, when applied to collections of data that
are inherently diverse, spatial database-based annotation yields subpar results, and this is all
because these sources are not adequately integrated.
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Figure 2b Number of triples Vs. Recall
In order to achieve high recall with poor precision, the MOUNT system utilises WordNet and
multi-level semantic annotation to extract the most accurate findings. According to the data,
when it comes to 350 million triples, the MOUNT method achieves a recall and precision of
0.95 and 0.705, respectively, while the current Airstore method only manages 0.66 and 0.89 in
the same situation. Due to fluctuation in the relevant number of triples, the recall value drops
as the number of triples grows, even while the precision value increases. At 350 triples, the
GSA method outperforms the Airstore method in terms of recall by 3.8% and the MOUNT
method by 1.8%. The numerical points of Figure 2a and 2b are illustrated in Table 4a and 4b,
respectively.
Table 4a Number of triples Vs. Precision

Number of triples (millions) Precision
MOUNT | Airstore | GSA
150 0.48 0.43 0.475
200 0.58 0.52 0.55
250 0.64 0.58 0.62
300 0.68 0.62 0.66
350 0.70 0.66 0.65
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Table 4b Number of triples Vs. Recall

Number of triples (millions) Recall
MOUNT | Airstore | GSA
150 0.98 0.95 0.968
200 0.975 0.932 0.952
250 0.968 0.928 0.948
300 0.952 0.91 0.935
350 0.948 0.892 0.93

3.1.2 Input’s effect
In the context of big data and semantic web technologies, scalability is a critical factor that
determines the effectiveness and efficiency of data processing methods. As the volume of input
data grows, particularly in terms of the number of triples, it is essential to understand how query
execution times are impacted. This understanding helps in assessing the scalability of different
methods and in optimizing them for better performance under varying data loads. Two
methods, MOUNT (Massive Ontology Unification and Normalization Technique) and
Airstore, are often compared for their performance in handling large volumes of semantic data.
By examining the runtimes of these methods in response to increasing numbers of input
sources, we can gain insights into their scalability and identify potential bottlenecks.
Testing MOUNT's Scalability: One effective approach to testing the scalability of MOUNT
is to systematically increase the number of input sources and observe the resulting changes in
query execution time. This method allows us to evaluate how well MOUNT handles different
volumes of triples and to compare its performance with Airstore. The following sections detail
the methodology, observations, and implications of this scalability test.
Methodology
. Setup and Configuration:
Configure the testing environment with identical hardware and software settings to
ensure a fair comparison between MOUNT and Airstore.
o Use a diverse set of input sources to simulate real-world scenarios, ranging from small
datasets to large, complex data collections.
Incremental Input Increase:
Start with a baseline number of input sources and gradually increase the volume of triples
by adding more sources.
o At each increment, measure the query execution time for both MOUNT and Airstore
methods.
Data Collection and Analysis:
Collect runtime data at each step to create a detailed performance profile.
Use statistical methods to analyze the impact of increasing input sources on query
execution times.
4. Observations and Results
The runtimes of the MOUNT and Airstore methods are shown in Figure 3. One way to test
MOUNT's scalability is to increase the number of input sources and see how the query
execution time changes in response to different volumes of triples. There could be anywhere
from 2.8 million to 14 million triples in this case. Over the different triples, the fixed query is
run on both systems. The query execution time grows linearly with the number of triples, as
shown in Figure 3. This indicates that the MOUNT system outperforms the Airstore in terms
of scalability. In contrast to Airstore, the MOUNT system stores and retrieves RDF triples
annotated at several levels using the Hadoop environment. In addition, the MOUNT executes
the queries independently of the inference engine. Compared to the Airstore method, which
conducts the identical query at 16.7ms, the MOUNT system does it at 13.5ms over 8.1 million
triples (Figure 3). In comparison to the GSA approach, the current Airstore method uses less
time to execute until the number of triples reaches 5 million. After that, the Airstore method
uses more time to execute than both the proposed MOUNT method and the existing Airstore
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method. The reason behind this is that the Airstore method isn't able to extract the RDF triples
that are relevant to the context, which makes processing time a burden.
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Table 5: Number of triples Vs. Execution time

Number of triples (millions) Execution time (ms)
MOUNT | Airstore GSA
2.8 2.5 4 5
4.8 8 10 11
8.1 14 17 16
10.5 19 23 22.5
14 23 28 27

By integrating big data, the MOUNT system not only determines the domain of the incoming

data, but it also unifies structured and unstructured data into a single representation.
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Table 6: Size of Input Data Vs. Execution time

4.5 5.0

Size of Input Data| Execution time (sec)
Both | Unstructured Data | Structured Data
1 95 90 88
2 100 96 92
3 108 101 95
4 116 110 104
5 120 114 109
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Table 7a Query Level Vs. Precision

Query Level Precision
MOUNT | Airstore GSA
0.1 0.37 0.31 0.305
0.3 0.39 0.34 0.33
0.5 0.41 0.36 0.355
0.7 0.46 0.39 0.385
0.9 0.49 0.43 0.42
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Figure 5b Query Level Vs. Recall
Table 7b Query Level Vs. Recall

0.90

Query Level Recall
MOUNT | Airstore GSA
0.1 0.93 0.89 0.88
0.3 0.96 0.912 0.91
05 0.965 0.925 0.92
0.7 0.972 0.94 0.935
0.9 0.98 0.95 0.945

5. SEASOR Approach:

Alirezaie Marjan and Amy Loutfi (2013) compared the SEASOR to three current methods—
CQELS, LSM, and SAAR—and their respective evaluation results are presented below.

A. Result Accuracy
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Figure 6 Number of triples Vs. Result accuracy
Figure 6 shows the SEASOR's performance in terms of result accuracy as the number of seasors
and its triples are increased. By going from 40 to 50 seasors, it shows how semantic annotation
affects the outcome. Under these conditions, every seasor records 0.035 million triples. Going
from 0.035 million to 0.038 million triples causes a steady improvement in the result's
accuracy. There is no discernible improvement in the precision of the results after the number
of triples reaches 0.039 million. Accuracy is consistent and linear when tested at a certain
interval utilising 40 seasors of the environment. The accuracy of the results remains unchanged,
nevertheless, when the number of seasors is raised to 0.038 million triples. Table 8 displays the
numerical data from Figure 6.
Table 8: Number of Triples (millions)/seasors Vs. Result Accuracy

Number of Triples Result Accuracy
(millions)/seasors
40 seasors | 50 seasors

0.035 0.83 0.85
0.036 0.845 0.862
0.037 0.855 0.869

0.038 0.863 0.8
0.039 0.879 0.88

0.04 0.88 0.88
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B. Execution Time
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Figure 7: Number of trlples Vs. Execution time
Increasing the number of seasors and their triples increases the execution time of the SEASOR
technique, as seen in Figure 7. Execution time is found to rise linearly with the number of
seasors and their triples, as seen in the figure above. With 40 seasors and 0.04 million
measurement triples, the SEASOR method takes 19.65 ms to run. With an increase of 50
seasors and their triples to 0.04 million, the system's execution time drops to 26.90 ms. Figure
7's numerical points are displayed in Table 9.

Table 9: Number of Triples vs. Execution Time

Number of Triples (millions)/seasors Execution Time (ms)
40 seasors | 50 seasors

0.035 12.29 20

0.036 13.25 215
0.037 14.86 23.82
0.038 15.58 24.52
0.039 18 26.35
0.04 19.65 26.90
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Figure 8 Number of seasors Vs. Execution time
As the number of contributing seasors increases, Figure 8 shows the execution time for the
registered query. The performance of a system is evaluated as the number of contributing
seasors is increased linearly from 50 to 250. In this case, the window size can be either 10 or
100 pixels. The goal of changing the window size is to alter the number of seasor readings
observed at a certain point during query processing. For example, if the window size is 10, it
means that the ten most recent seasor values will be used for the query. The execution time
ranges from 12.29 to 26.10 milliseconds when the window size is set to 10. Raising the window
size to 100 lengthens the execution time. When using a window size of 100 and 250 seasors,
the response time is 38.32 milliseconds. While processing the windows in parallel sequence,
the SEASOR divides them into subwindows and processes them serially. As a result, when the
window size is increased, the SEASOR technique takes more time to execute and uses fewer
windows. In addition, it helps make the query result more accurate. Figure 8's associated values
are shown in Table 10.
Table 10: Number of seasors vs. Execution Time

Number of Seasors Execution Time (ms)
Window Size =10 | Window Size =100

50 13 25

55 15.5 29

60 19.5 33

65 24 36

70 38 38
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5.1 The effect of annotation
A. Result Accuracy
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Figure 9 Number of triples Vs. Result accuracy
As shown in Figure 9 and Table 11, the accuracy of the SEASOR is measured by varying the
amount of annotated features from minimum to maximum. Additionally, there have been
anywhere from one million to two million triples. The effect of labelling the most extensive
seasor features on the precision of the query results is shown. Accuracy is maximised when all
seasor features are annotated to the triples.

Table 11: Number of triples vs. Result Accuracy

Number of triples (millions) Result accuracy
Min FA Max FA
1.0 0.97 0.99
1.25 0.93 0.985
1.50 0.88 0.9825
1.75 0.843 0.9765
2.0 0.817 0.97

As the minimum number of annotated features lowers, the accuracy of the result also drops.
Basically, the system still can't handle the complicated queries, even after annotating the seasor
features.
6. Conclusion
This research compares the performance of two suggested semantic enrichment algorithms to
numerous established methods on two datasets. Implementation scenario, hardware and software
requirements, dataset, and assessment criteria were discussed. The proposed semantic enrichment
approaches have shown performance improvement through evaluation results and proper
description.
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